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Abstract. We present a novel method for determining the position of
a mobile computer user based on the intensity of the signals received
from a collection of wireless network access points. Our scheme uses a
combination of Bayesian filtering and route planning techniques that ac-
count for the geometry of the building, to determine the probable trajec-
tory of a user moving through an indoor environment. Our particle filter
scheme has applicability beyond wireless network-based localisation, and
could be used to improve the accuracy and precision of other positioning
technologies. The approach has the potential to provide reliable indoor
positioning information to support location-aware services.

1 Introduction

The provision of services to mobile users based on their location represents the
archetypal pervasive computing application. Within such applications, the posi-
tion of the user provides the context in which tailored services can be offered to
meet the information needs of the individual.

Typically, location-based services focus on providing information regarding
people, places and things [1]. For example, a location-based service might offer
information on the whereabouts of friends and family; it might provide a weather
report based on current location; or it could report the position of a stolen item
such as a mobile phone or car.

In addition to providing information, a person’s location can also be used to
provide an additional layer of security and safety in the form of authentication
and access control of services [2]. For example, in a hospital environment, confi-
dential medical records might only be available to healthcare workers inside the
hospital building, or an x-ray machine might only operate when the radiographer
is in a position that is suitably shielded.

The principal problem to be addressed in systems that provide location-based
services is the accurate positioning of people with respect to each other, physical
locations or devices. Depending on the application, the position of the user may
be required with an accuracy ranging from centimetres to hundreds of metres.
A number of technologies can provide positioning information over these length
scales. In the context of outdoor environments, global positioning systems (GPS)
and cellular phone networks can be used to provide a person’s location with an
accuracy of ≈ 1m and ≈ 100m, respectively.



For positioning indoors, neither GPS nor cellular-based techniques are suit-
able, due respectively to the weakness of the signal and poor accuracy. Instead,
a range of other devices and techniques have been developed for the purposes of
positioning people within buildings. Active sensing systems based on ultrasound,
infrared, laser range finding, and both narrow band and ultra wide band radio
frequencies (RF) have been developed. In addition, passive sensing technologies
for positioning which rely on radio frequency identification (RFID) technology,
cameras and physical contact have also been investigated. Hightower and Bor-
riello have recently surveyed positioning technologies [3].

One of the most popular methods for determining the location of a wireless-
enabled computer user exploits the characteristics of the wireless network itself.
Various researchers have recently developed techniques for people localisation
using the signal intensities1 received from IEEE 802.11b access points [4, 5].
The reasons for the popularity of this approach are that it can exploit (and
add value to) an existing wireless network, and that the cost of the sensing
infrastructure (the access points) is relatively low when compared to many other
indoor positioning technologies.

However, wireless local area network (WLAN) based systems also possess
a number of disadvantages. First, they require the creation of a model of the
propagation of RF throughout the area in which the position of the user is to
be determined. In general, indoor environments severely affect the propagation
of wireless signals, and the presence of multi-path effects and interference means
that a realistic wireless propagation model cannot be generated analytically.
Instead the model must be created empirically, by conducting a site survey of
RF signal strength. Depending on the complexity and size of the environment,
the process of surveying signal intensities can be time consuming and error-prone.

Second, the propagation of RF in the 2.4 GHz band is particularly susceptible
to absorption by people, which can cause the propagation model to deviate from
the ground truth at different times of the day. More generally, changes to the
physical environment may need to be reflected in the propagation model, if
positioning accuracy is to be preserved. Changing the orientation of the antenna
on the client wireless card can also produce deviations in the received signal
strength from the model.

Finally, the received signal strength also depends on the hardware used and
the number and positions of the access points. Changes to any of these can
impact the position estimate.

Given the assumption that the wireless infrastructure and the gross features
of the environment remain constant, the problem becomes one of how to min-
imise the impact of the significant random errors in the measured signal strength.
A number of Bayesian filtering approaches have been applied to the problem of
reducing the measurement noise in WLAN-based positioning systems. The ap-
plication of the Kalman filter and its extended variants has been demonstrated
previously [6, 7]. Recently, the more generally applicable particle filter approach

1 We will use the terms signal strength and intensity interchangeably to refer to these
quantities.



has been used to improve accuracy [8, 9]. Particle filters have the advantage of
being able to model non-Gaussian noise and multi-modal probability distribu-
tions, which leads to flexible and more robust error correction.

In this paper, we describe our technique for establishing the position of a
wireless-enabled Personal Digital Assistant (PDA) user, based on an analysis of
the received signal intensities and Bayesian filtering. Our scheme differs from
previous applications of Bayesian filtering to the problem of WLAN-based geo-
location through its use of route planning and obstacle avoidance algorithms
during the probabalistic prediction phase.

We begin by describing a novel approach to determining an initial estimate of
the user’s location. We then examine how to reduce the uncertainties associated
with our position estimate using a Kalman filter. Finally we compare the results
using a Kalman filter with those using a particle filter technique that uses a route
planning algorithm to account for the presence of walls and doors in a building.

2 WLAN-based localisation

The principal method for establishing location using wireless networks is the
nearest neighbour in signal space (NNSS) approach [4]. During the positioning
cycle, a candidate set of N signal strengths are received from the available access
points. The vector of these signal strengths is I. I is compared to entries in a
database containing recorded signal strengths measured at known locations, xj ;
xj is a vector (of two values) consisting of the Cartesian position corresponding
to the entry in the database. Typically, these locations may be spaced several
metres apart. This database represents the results of a previous RF survey in
the physical area of interest. The signal strength vector at location xj is I

(
xj

)
.

The mobile user’s location is estimated to be at the position corresponding to
the database entry that minimizes the Euclidian distance in the abstract signal
space, i.e. the minimum of |I − I

(
xj

) |:
〈x〉 = arg min

xj
|I − I

(
xj

) | (1)

A further refinement of the estimate can be made by using weighted averages
of multiple nearest neighbours in signal space [4, 6]. The weights in this averaging
are then the inverse of the distance, such that the estimate of the position is:

〈x〉 =

∑
j∈Jn

fI

(
I, I

(
xj

))
xj

∑
j∈Jn

fI (I, I (xj))
(2)

where j ∈ Jn means that the sum is over the n nearest neighbours and fI

(
I, I

(
xj

))
is the weight, which is:

fI

(
I, I

(
xj

))
=

1
|I − I (xj) | (3)

Note that if Jn is simply the nearest neighbour in signal space, j?, then
equation (2) becomes:

〈x〉 = xj?

(4)



which is exactly the same as equation (1).

2.1 Likelihood approach

The weights, fI

(
I, I

(
xj

))
, can be interpreted as probabilities or likelihoods,

which makes it possible to motivate an alternative scheme for deriving a position
estimate from the measured intensities.

Using a weight that is the inverse of the Euclidean distance in signal space
will result in an equal weighting being given to each of the signals received in
the positioning cycle. This can result in a lack of robustness; using equation (1)
or equation (3), if some of the received signals imply that the position is near
(in signal space) to one entry in the database and the other signals imply that
the position is near another entry then the estimate can be prone to jumping
between the two corresponding positions. It is possible to use a different form
of the weight to counter this effect, namely a Student-T distribution, in which
case:

f?
I

(
I, I

(
xj

))
=

N∏

k=1

(
1 +

(
Ik − Īk

(
xj

))2

µσs
2

)−µ+1
2

(5)

where the product over k is over the available access points. Ik is then the
intensity corresponding to the kth available access point and Ik

(
xj

)
is the cor-

responding intensity for the jth entry in the database. σs is the uncertainty over
the signal strength; it is the standard deviation between the measured intensity
and the intensity near a point in the database predicted at a position. µ is a pa-
rameter governing the uncertainty over this value. Since this approach is robust,
we found we could simply use all the points in the database as the n nearest
neighbours:

〈x〉 =

∑
j f?

I

(
I, I

(
xj

))
xj

∑
j f?

I (I, I (xj))
(6)

We used σs = 3 and µ = 5 throughout and we will refer to this approach
as the “likelihood” method for deriving position estimates from the measured
intensities.

2.2 Interpolation

One can extend these ideas to try to visualise the information encoded in each of
the received intensities in isolation. To do this, we need to be able to model how
the intensity changes with position. So, there is a need to interpolate between
the positions in the database to predict intensities for a grid of candidate points.

To perform this interpolation, we use a weighted estimate of the intensities
in the database to get an estimate of the intensity at a position, x:



〈Ik (x)〉 =

∑
j fx

(
x, xj

)
Ik

(
xj

)
∑

j fx (x, xj)
(7)

where
fx

(
x, xj

)
= G (

x; xj , σ2
p × I2

)
(8)

where I2 is a 2 × 2 Identity matrix and G (x; 〈x〉, C) is a Gaussian distribution
for x with a mean of 〈x〉 and a covariance of C:

G (x; 〈x〉, C) =
1√
|2πC| exp

(
−1

2
(x− 〈x〉)T

C−1 (x− 〈x〉)
)

(9)

where xT is the transpose of a vector x and C−1 and |C| are respectively the
inverse and the matrix determinant of a matrix, C.

This makes it possible to derive an estimate of the kth signal strength at any
point (and so interpolate between the points in the database). σp is another de-
sign parameter which models the concept of geometric proximity and so controls
the extent of the influence of the entries in the database in terms of geometric
distance: reducing σp results in the interpolated intensities moving closer to the
entries in the database when near to the corresponding position; increasing σp

results in the interpolated intensities forming a smoother surface. We found an
appropriate compromise was achieved using σp = 3 m.

The likelihood of the measured intensity from the kth access point is then
p

(
Ik|x)

, which is assumed to be a Gaussian distribution with mean 〈Ik (x)〉 and
standard deviation, σs, such that:

p
(
Ik|x)

= G (
Ik; 〈Ik (x)〉, σ2

s

)
(10)

Values of p
(
Ik|x)

can be calculated for a grid of values, x, and for each of
the available access points. The result is that the surfaces defined by p

(
Ik|x)

are a visualisation of the likely positions given the measured signal strengths in
isolation.2

The values derived at each point can then be multiplied across the available
access points to obtain fused values of p (I|x) for the grid of values of x:

p (I|x) =
N∏

k=1

p
(
Ik|x)

(11)

p (I|x) can then be used to visualise the likely positions given all the measured
signal strengths.
2 A pedantic author might emphasise that p

(
Ik|x)

is a likelihood function parame-

terised by x; it is not a probability distribution and is not the posterior p
(
x|Ik

)
.

Hence, it is really a tool for visualising how likely the measured signal is at different
positions and should not strictly be interpreted as the probable positions given the
measured signal strengths. These quantities would only be equivalent if the prior on
the position was uniform over the visualised region. These issues are not explored
further in this paper.



2.3 Location estimation results

The architecture for our prototype positioning system consists of a Web service,
a PDA (IPAQ), and a wireless network comprising five IEEE 802.11b access
points distributed throughout an office environment. The PDA captures signal
intensities and sends them over the wireless network to the Web service using the
simple object access protocol (SOAP). The Web service generates an estimate
of the position using equation (6). The Web service can provide this location
estimate to other Web services, which in turn can supply tailored services to the
PDA user based on their location. The aim is to then use Bayesian filtering and
route planning operations on the sequence of these initial estimates to reduce the
impact of measurement noise; this will be described in detail in section 3. Here,
it suffices to say that position estimation is performed server-side because of the
complex nature of Bayesian filtering and the limited computational resources on
the PDA.

Fig. 1. Representations of the likely positions of a wireless PDA in an office environ-
ment. The darker regions indicate likely positions for the PDA. The figure shows these
likely positions calculated from the perspective of each of the five access points indi-
vidually (each labelled ‘+’ in the corresponding image). The combined probability is
shown in the lower right of the figure, and the user’s actual position is indicated by
‘×’.

The process of determining the probable location of a PDA user in the office
environment is visualised in figure 1. The figure shows six plan views of the same
office space, with lines indicating the walls. The lower right section of the figure
visualises the likely position of the user, as p (I|x), which is calculated according
to equation (11). This likelihood is highly localised within a single office near to
the user’s actual position, which is labelled by ‘×’. As described previously, this
likelihood is calculated at each point as the product of the likelihoods perceived
from each of the five access points. The other five sections of the figure visualise
the likely positions given the signal strength for each of the access points in



isolation, as p
(
Ik|x)

. The five access points are indicated by a ‘+’. The five
likelihoods were calculated using equation (10).

The shape of the likelihoods for each of the wireless access points hints at the
role that the access points play in locating a user. Each access point acts as a
range finding sensor, localising the PDA to the circumference of a circle centred
on the access point. This is best illustrated in the bottom left section of figure
1, which shows the user’s likely position as being confined to a band around the
access point. The presence of walls and other obstructions tends to distort the
shape of the likelihood from a circle.

In figure 2 we present the results of experiments in tracking the position of a
mobile user moving through an office building. The figure shows the positioning
error and the cumulative probabilities for two different position estimation tech-
niques: the well-known NNSS approach; and our likelihood approach which was
described in section 2.1. The results are derived from one hundred signal samples
taken during ten traversals of the same path between two offices. The positioning
errors represent the deviation of the estimated position from the ground truth.
The ground truth is represented by a series of waypoints at which samples of
signal strength are taken and an estimate of position is computed. The NNSS
values were obtained using a weighted average of the nearest three neighbours
in signal space.

In our tests, position estimates obtained using the likelihood approach have
a higher probability of being accurate to within 1 m of the true position, when
compared to estimates derived using the NNSS approach: a probability of 0.35
for the likelihood approach; and a probability of 0.18 in the case of the NNSS
scheme.

In the sections that follow, we describe how the positioning errors can be
reduced by the application of Bayesian filtering and route planning, and provide
the results of tracking experiments performed with a Kalman filter and a particle
filter. First, however, we provide a brief overview of Bayesian tracking theory.

3 Tracking as sequential Bayesian inference

Tracking can be posed as the sequential Bayesian inference problem. The state
of the target contains all the pertinent information relating to the target, which
might just be the position of the target, but could also contain information relat-
ing to the velocity of the target or other quantities of interest. The uncertainty
over the target’s state, xt, resulting from the history of the incoming stream
of estimates of position (derived from the wireless signal intensities), z1:t, is
represented using the probability distribution p (xt|z1:t). As each new measured
position, zt, is received, this distribution is sequentially updated using the model
for the dynamics of the target, p (xt|xt−1) and the likelihood p (zt|xt):

p (xt|z1:t)︸ ︷︷ ︸
New track

∝
∫

p (zt|xt)︸ ︷︷ ︸
Likelihood

p (xt|xt−1)︸ ︷︷ ︸
Dynamics

p (xt−1|z1:t−1)︸ ︷︷ ︸
Previous track

dxt−1 (12)
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Fig. 2. Cumulative probabilities and positioning errors for tracks determined using
the nearest neighbour in signal space approach and our likelihood approach which is
described in section 2.1.

We now describe in moderate detail how this generic process is conducted
when using a Kalman filter and a particle filter. We suggest that, if the reader
is more interested in the results than the details of the generic implementation,
the reader should skip these subsections and move on to section 4.

3.1 Kalman filter

If the dynamics and likelihood are (or can be approximated as) linear and Gaus-
sian (so parameterised by a set of matrices) then the track is parameterised using
a mean and covariance matrix3. A Kalman filter can then be used to recursively
calculate these quantities.

So, the dynamics and likelihood are assumed to be of the following form:

p (xt|xt−1) = G (Fxt−1, Q) (13)
p (zt|xt) = G (Hxt, R) (14)

where zt is a measurement of position derived from the received intensities, It,
and where G (m, C) is a Gaussian distribution with mean m and covariance C.
These models are therefore parameterised by four matrices; F , Q, H and R.
3 If the models are linear and Gaussian then the Kalman filter is the optimal algorithm

to use. If the models used are approximated as being linear and Gaussian then the
algorithm is often referred to as an Extended Kalman filter and is an approximate
algorithm.



This is equivalent to having:

xt = Fxt−1 + ωt (15)
zt = Hxt + εt (16)

where

ωt ∼ G (0, Q) (17)
εt ∼ G (0, R) (18)

and where x ∼ p (x) means that x is a sample drawn from the distribution p (x).
The process begins with some initial estimate of the state m0|0 and some

associated covariance, C0|0. At time t, the Kalman filter stores an estimate of
the state, mt|t, and an associated covariance matrix, Ct|t. The Kalman filter then
operates by using the matrices parameterising the models to update these two
quantities in the light of the received measurement, zt. Specifically, the recursive
operation of the Kalman filter is as follows:

mt|t−1 =Fmt−1|t−1 (19)

Ct|t−1 =FCt−1|t−1F
T + Q (20)

mt|t =mt|t−1 + PxzP
−1
zz

(
zt −Hmt|t

)
(21)

Ct|t =Ct|t−1 − PxzP
−1
zz PT

xz (22)

where

Pxz =HCt|t−1 (23)

Pzz =HCt|t−1H
T + R (24)

A fuller description of Kalman filter-based tracking algorithms may be found
in [10].

3.2 Particle filter

The particle filter adopts a different approach and uses the diversity of a set
of (a few hundred) particles to convey the uncertainty over the track. Each
particle represents a candidate state for the target, xi

t, and also has an associ-
ated weight, wi

t. The particles are initially sampled according to the prior on
the state, which could be the Gaussian distribution with the mean and covari-
ance used to initialise the Kalman filter (m0|0 and C0|0). At each subsequent
iteration, the particles are propagated through some convenient proposal distri-
bution, q (xt|xt−1, zt), which moves each particles from where they hypothesised
that the target was to some candidate positions for where the target might be:

xi
t ∼ q

(
xt|xi

t−1, zt

)
(25)



The weight then reflects the disparity between the true distribution and the
proposal that was used to propagate the particles and is calculated as follows
using evaluations of the probability distributions:

wi
t ∝ wi

t−1

p
(
xi

t|xi
t−1

)
p

(
zt|xi

t

)

q
(
xi

t|xi
t−1, zt

) (26)

where the weights are normalised across the particles to sum to unity.
The advantage of this approach is that the proposal distribution can be of

a convenient (usually Gaussian) form, but evaluations of the models update the
weights; the (potentially approximate) models are not restricted to be linear
and Gaussian as with the Kalman filter. The impact is that any information
that would be lost in approximating the models as linear and Gaussian (which
one is forced to do when using an Extended Kalman Filter) can be used by the
particle filter. This information can be critical to performance and, when it is,
the particle filter can offer improved performance over the Kalman filter.

The disparity between the proposal distribution and the true track results
in the weights becoming skewed—one of the particles eventually has a weight of
one and all the others have a weight of zero. To alleviate this effect, the samples
are probabilistically replicated and discarded on the basis of the weights such
that the total number of particles remains constant. This can be carried out at
each time step or a diagnostic can be used to determine when to carry out this
resampling step.

The particle filter is the sequential Bayesian inference analogue of evolution-
ary algorithms, with which the reader may be more familiar: the sampling step
plays the role of the mutation step, the weight evaluation corresponds to the
cost calculation and the resampling is reminiscent of the selection step. A fuller
description of particle filtering is available in [11].

4 Application to wireless localisation

4.1 Kalman filter

If we assume that the position of the PDA at a point in the future is approxi-
mately where the PDA was at a recent point in the past then it is appropriate to
model the movement with a Gaussian distribution; the difference in position is
a sample from a Gaussian distribution. Since the position has two components,
the Gaussian distribution is bivariate. Such a model is known as a random walk
model and is equivalent to defining the matrices parameterising the model as
follows:

F =
[

1 0
0 1

]
(27)

Q =
[

T 0
0 T

]
q (28)



where T is the time step between measurements and q is a quantity that deter-
mines the scale of the random perturbations. We used a popular algorithm based
on the Kalman filter, known as the interacting multiple model (IMM) [10]. The
IMM automates the selection of the value of q from a number of candidates. We
used two candidate values: q = 0.1 m2s−1 and q = 0.001 m2s−1. The fact that
Q, which defines the scale of the random perturbations is scaled by T means
that the size (variance) of the perturbations scales (linearly) with the time be-
tween measurements; if the time between measurements happens to be large, the
uncertainty will be larger than if this time is short. This is intuitively appealing.

The likelihood used by the Kalman filter is that derived from equation (6).
In that we are trying to estimate position from a sequence of measurements of
position in the presence of noise, we can define the matrices as follows:

H =
[

1 0
0 1

]
(29)

R =
[

σ2
z 0
0 σ2

z

]
(30)

where σz is the standard deviation of the position estimate derived from the
received intensity. It therefore represents the uncertainty associated with the
position estimate. We used σz = 3 m.

So, operation of the filter consists of substituting equations (28) to (30) into
equations (20) to (24) and so deducing an estimate of the position of the PDA
as mt|t.

4.2 Particle filter

The particle filter uses a dynamic model based on the shortest path between
the sampled positions at the two time steps, xi

t−1 and xi
t. The shortest path is

calculated using the A∗ search algorithm [12], which accounts for the geometry
of the environment in which tracking is being performed. The distance travelled
is then assumed to be a Gaussian distribution with mean zero. So, in calculating
the weight update, p

(
xi

t|xi
t−1

)
is taken to be:

p
(
xi

t|xi
t−1

)
= 2G (

d
(
xi

t, x
i
t−1

)
, qT

)
(31)

where d
(
xi

t, x
i
t−1

)
is the distance calculated by the A∗ search algorithm. The

2 is present to ensure p
(
xi

t|xi
t−1

)
integrates to one given that distances are

constrained to be greater or equal to zero. This choice of model is equivalent
to the random walk model used above if no walls are present. This enables the
particles’ weights to reflect the effect of movement constraints imposed by the
presence of walls.

The particle filter uses the same model as the Kalman filter for the measure-
ment process:

p (zk|xk) = G (Hxk, R) (32)



The proposal distribution used is the random walk model outlined in the
previous section:

xt ∼ q
(
xi

t|xi
t−1, zt

)
= G (

Fxi
t−1, Q

)
(33)

So, for each particle, operation of the particle filter consists of simulating
values of xi

t from G (
Fxi

t−1, Q
)

and then substituting equations (31) and (32)
into equation (26) to calculate the particle weights. Resampling is then used if
necessary.

5 Results of Bayesian filtering

We have applied Kalman and particle filters to the estimates of position gener-
ated by the likelihood approach (see section 2.1). Figure 3 shows the probability
of obtaining an estimate of position for a given error. The figure allows for a com-
parison between the accuracy obtained using the likelihood approach, a Kalman
filter, a particle filter that exploits the A∗ search algorithm, and the particle
filter with route planning disabled.
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Fig. 3. Cumulative probabilities and positioning errors for tracks determined using the
Kalman filter, particle filter and particle filter combined with A∗ route planning. The
positioning errors for the likelihood approach are also given for comparison.

In general, both the particle filter methods and the Kalman filter outper-
form the likelihood method. The particle filter approach that accounts for the
geometry of the building offers a probability of 0.55 of obtaining an estimate
of position that is accurate to within 1 m. A particle filter without the route



planning functionality provides a similar level of accuracy with a probability of
0.35. Clearly there are benefits to be gained from a treatment of the geometry
of the environment in which positioning is taking place.

The results for the Kalman filter and the particle filter are similar in the
case of no route planning. Any differences between the two graphs in figure 3
are likely to be due to the randomness of the algorithm used in the particle
filter approach and our choice of the number of particles. Over a repeated set of
experiments one would expect the results of the Kalman filter and the particle
filter to converge, in the absence of route planning.

The particle filter approach has an advantage over the Kalman filter because
the application of the A∗ search algorithm to the particle filter method is easier
to implement and interpret. To illustrate, in our approach the A∗ algorithm is
used to supply the length of the navigable path between a particle’s previous
position and its currently measured position. This path length is determined
for all particles. We interpret this path length as a probability according to
equation (31), and the longer the path length, the lower the confidence there is
in that particle’s proposed trajectory. This means that the importance of certain
trajectories will tend to diminish with respect to others, leading to more credible
position estimates. It is less clear how such a scheme could be applied in the case
of the Kalman filter.

6 Summary and discussion

We have described a new approach to generating an estimate of a wireless PDA
user’s position, based on the signal strength received from IEEE 802.11b access
points. Our likelihood method effectively treats each access point as a range find-
ing sensor, providing the probable location of the user along the circumference
of a circle centred on the access point, but distorted by the presence of walls. We
have shown that our likelihood approach provides a higher level of positioning
accuracy than the traditional NNSS approach.

We have attempted to increase the accuracy of our tracking scheme further
by applying Bayesian filtering techniques to estimates of position generated using
our likelihood method. In general, Bayesian filtering provides improved accuracy
by accounting for the dynamics of the user and the position estimate at the pre-
vious time step, in addition to the position estimate at the current time. We have
extended the Bayesian technique to account for the layout of the environment
by employing the A∗ search algorithm which acknowledges the existence of walls
and other obstructions during route planning. Thus, estimates of the position of
the user are restricted to corridors, rooms and doorways. Our results show that
an improved estimate of position can be obtained by using a combined particle
filter/A∗ approach.

While wireless positioning combined with Bayesian filtering does provide a
reasonable degree of accuracy, a more dependable way of establishing position
may be required for certain applications. If people are to trust location-based
services enough to use them, then they need to be sure that their location is



known to a sufficient degree of accuracy and precision. To address the need for
improved accuracy, a strength-in-depth approach has been advocated [13], in
which a number of positioning technologies are combined to provide a fused
estimate of the position of the user. A simple example of this might be the
placement of a short range RFID reader within a corridor. If an RFID tag
were to be attached to the user or the PDA, then the position of the user as
they walked past the RFID reader could be established unambiguously, and this
information used to calibrate the wireless location service.

A great deal of time and effort is required to generate the initial survey
of received signal strengths as a function of position. It may be possible to
lower the sampling density of the survey by relying on interpolated values of
signal strength generated by the method described in section 2.2. Interpolation
of values may provide a better initial estimate of position when the sample
density is low, when compared to the NNSS method. Attempts have also been
made to use learning algorithms to help reduce the number of survey points
required for positioning [8]. In this approach, signal strength data is collected
by people as they walk through a building and the patterns received are used to
form the basis of a motion model of the person. A less comprehensive database
of received signal strengths can be exploited, since it is the motion model that
is primarily responsible for estimating the position of the person.

The use of particle filters makes it possible to exploit the measured intensities
directly using an approach similar to that used in section 2.3 to visualise the data.
However, our initial efforts indicate that this necessitates some development of
the interpolation scheme used. This is the subject of current work.
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